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Generation of polarization-entangled optical coherent waves
and manifestation of vector singularity patterns
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We use a high-level isotropic laser with off-axis focused and on-axis circular pumping to generate the high
order polarization-entangled transverse modes. The main finding is that the complex transverse modes can be
categorized into four types: square pattern, hyperbolic pattern, elliptic pattern, and circular pattern. Importantly,
all types of the polarization-entangled modes can be well analyzed with the generalized coherent states. With
the connection between theoretical analysis and experimental results, the formation of complex singularities

can be clearly represented.
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I. INTRODUCTION

Over the past few years a considerable number of studies
have been made on the coherent wave properties in meso-
scopic physics. Much research has been focused on phase
singularities in scalar fields, known as wave front disloca-
tions, such as quantum ballistic transport [1], vortex lattices
in superconductors [2], quantum Hall effects [3], linear and
nonlinear optics [4,5], and Bose-Einstein condensates [6,7].
In recent years, polarization singularities, known as wave
front disclinations, are also noticed in modern physics
[8—10]. As mentioned by Freund [11], there are two types of
singularities of the polarization vectors of paraxial optical
beams: vector singularities and Stokes singularities. Vector
singularities are isolated, stationary points in a plane at
which the orientation of the electric vector of a linearly po-
larized vector field becomes undefined. The nature of the
vector singularities has been studied in the coherent optical
waves with the correlated behavior of spatial structures and
polarization states [12-15].

Recently, a microchip solid-state laser has been employed
to perform analogous studies of the coherent scalar waves in
the quantum-classical correspondence [16]. Furthermore, an
isotropic microchip laser has been used to generate the po-
larization vector field that is made up of two linearly polar-
ized modes with different spatial structures that are phase
synchronized to a single frequency [17]. However, the high-
order polarization-entangled transverse modes are found to
lack the flexibility because of the doughnut pump profile.
Nowadays, manipulation and generation of the polarization-
entangled optical wave may be promising for some funda-
mental investigations, such as light-matter interaction.

In this work we demonstrate two practical pump schemes
to generate various kinds of polarization-entangled patterns.
One of the schemes is the off-axis focused pump profile, and
the other is the on-axis circular pump profile. With these two
pumping schemes, we can generate various kinds of
polarization-entangled patterns in the highly isotropic reso-
nator. Experimental results reveal that the polarization-
entangled transverse modes can be categorized into four
types: square pattern, hyperbolic pattern, elliptic pattern, and
circular pattern. All types of the polarization-entangled pat-
terns can be analytically reconstructed with the generalized
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coherent states. With the connection between theoretical
analysis and experimental results, the formation of complex
singularities can be clearly represented.

II. EXPERIMENTAL SETUP AND RESULTS

In the experiment, the laser system is a diode-pumped
Nd: YVO, microchip laser and the resonator configuration is
depicted in Fig. 1. The laser gain medium was a c-cut 2.0-
at. % Nd:YVO, crystal with a length of 2 mm. One side of
the Nd:YVO, crystal was coated for partial reflection at
1064 nm. The radius of curvature of the cavity mirror is R
=10 mm and its reflectivity is 99.8% at 1064 nm. The pump
source was an 809 nm fiber-coupled laser diode with a core
diameter of 100 um, a numerical aperture of 0.16, and a
maximum output power of 1 W. A focusing lens with 20 mm
focal length and 90% coupling efficiency was used to reim-
age the pump beam into the laser crystal. Since the YVO,
crystal belongs to the group of oxide compounds crystalliz-
ing in a zircon structure with tetragonal space group, the
Nd-doped YVO, crystals show strong polarization dependent
fluorescence emission due to the anisotropic crystal field.
The fourfold symmetry axis of the YVO, crystal is the crys-
tallographic ¢ axis; perpendicular to this axis are the two
indistinguishable @ and b axes. Therefore, the Nd:YVO,
crystal is precisely cut along the ¢ axis for high-level trans-
verse isotropy. It is practical to note that our gain medium is
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FIG. 1. (Color online) Experimental setup for the generation of
polarization-entangled transverse modes with off-axis pumping
scheme in a highly isotropic diode-pumped microchip laser.
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FIG. 2. (Color online) Experimental polarization-entangled pat-
terns (a) square pattern, (b) hyperbolic pattern, (c) elliptic pattern,
(d) circular pattern.

different from the conventional Nd: YVO, crystals that are
cut along the a axis to use the largest stimulated emission
cross section for lowering the lasing threshold. To measure
the transverse far-field pattern, the output beam was directly
projected into the CCD camera. Figure 1 shows the scheme
of the highly isotropic laser system in this work.

First of all, we demonstrate that the off-axis focused con-
figuration can be used to generate the three kinds of
polarization-entangled patterns: square pattern, hyperbolic
pattern, and elliptic pattern which are shown in Figs.
2(a)-2(c). With controlling the pump position (x,,y,) with
respect to the propagation axis, the square, hyperbolic, and
elliptic patterns can be generated. The pump positions are at
(=50 wm, 63 pum), (=140 wm, 20 wm), and (=137 wm,
61 um) for the square, hyperbolic, and elliptic patterns, re-
spectively. Note that the radial distance of the pumping beam
ro= \5x(2)+y(2) determines the lasing mode size. The radial dis-
tances of pumping beam for the square, hyperbolic, and el-
liptic pattern are 80, 140, and 150 um, respectively, which
are consistent with the mode sizes of the three experimental
transverse modes. Off-axis pumping is employed to generate
the polarization-entangled states which are respectably stable
with highly isotropic laser system. Figure 2(d) shows the
circular pattern which can be generated with the on-axis de-
focused pump scheme. The on-axis pumping provides a good
symmetry to generate the stable circular modes. It can be
seen that the formation of the stationary polarization-
entangled mode is primarily dependent on the overlap be-
tween the pump intensity and the lasing mode distribution.
This is consistent with the fact that the cavity mode with the
biggest overlap of the gain region will dominate the lasing
process. In other words, controlling the pumping scheme and
the pumping position can precisely manipulate the genera-
tion of various stationary polarization-entangled modes in a
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FIG. 3. (Color online) Experimental polarization-resolved pat-
terns according to the pattern in Fig. 2(a). (a) 45° polarization, (b)
90° polarization, (c) 135° polarization, (d) 180° polarization.

highly isotropic laser cavity. All of the experimental modes
are preserved from the near-field to the far-field patterns be-
cause they are found to be coherently superposed by the
transverse modes with the same Gouy phase.

All the lasing modes are found to be made up of two
distinct patterns with orthogonal linear polarization. That is
to say, the polarization of the transverse pattern is linear but
spatially dependent. Figures 3-6 show the experimental
polarization-resolved patterns in the 45°, 90°, 135°, and 180°
direction according to the patterns in Figs. 2(a)-2(d). It is
found that the entanglement of the spatial structures and po-
larization states forms an optical vector field and leads to the
transverse patterns to be polarization dependent. Although
the structures of the polarization-entangled patterns are com-
plex, the lasing modes are quite stable and easily reproduc-
ible with the present pumping schemes. It is worthwhile to
mention that the basic requirement for the formation of a
vector polarization pattern is that the orthogonal polarization
modes with different spatial patterns are phase synchronized
to a common frequency. The measurement of the optical
spectrum is used in the experiment to verify the polarization-
resolved pattern to be phase synchronized to a single fre-
quency.

III. ANALYTICAL WAVE FUNCTIONS FOR
EXPERIMENTAL POLARIZATION-ENTANGLED
PATTERNS

The wave function for the paraxial field in the spherical
laser resonator can be expressed as Hermite-Gaussian (HG)
function with Cartesian symmetry @th(x, v,z), where m and

n are the indices of x and y coordinates or Laguerre-Gaussian
(LG) function with cylindrical symmetry @ﬁ’?(r, ¢,z), where
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FIG. 4. (Color online) Experimental polarization-resolved pat-
terns according to the pattern in Fig. 2(b). (a) 45° polarization, (b)
90° polarization, (c) 135° polarization, (d) 180° polarization.

p and [ are the radial and azimuthal indices [18]. It is well
known that the paraxial wave equation for the spherical reso-
nator has the identical form with the Schrodinger equation
for the two-dimensional (2D) harmonic oscillator [18]. The
SU(2) coherent states for the 2D harmonic oscillator are well
localized on classical elliptic trajectories [19,20]. The SU(2)
coherent states have been shown to play an important role
for the quantum-classical connection in the 2D quantum sys-

FIG. 5. (Color online) Experimental polarization-resolved pat-
terns according to the pattern in Fig. 2(c). (a) 45° polarization, (b)
90° polarization, (c) 135° polarization, (d) 180° polarization.

PHYSICAL REVIEW E 75, 026614 (2007)

)

FIG. 6. (Color online) Experimental polarization-resolved pat-
terns according to the pattern in Fig. 2(d). (a) 45° polarization, (b)
90° polarization, (c) 135° polarization, (d) 180° polarization.

tems [21,22]. It has also been confirmed that the experimen-
tal elliptic patterns agree very well with the SU(2) elliptic
states [23,24]. Even so, the SU(2) coherent states can only be
used to describe the elliptic patterns. To explain other
polarization-entangled patterns, we need to use the general-
ized coherent states (GCSs) to be related to the transition
from HG modes (I)Zi(x, y,z) into various experimental
modes with different phase factor. The GCSs used in this
work are identical to those used previously [17]. Here we
present a brief synopsis for completeness. In terms of the HG
modes, the SU(2) coherent states for the elliptic modes are
expressed as [19,20]

VN1 _
W,y z50) = = > ———=r=e"OV% 1(x,y.2),
N V2V VIN=-K)IVK! MK

(1)

where the parameter ¢ is the relative phase between various
HG modes and is related to the eccentricity of the elliptic
trajectory, and the wave function of HG mode is given by

‘ . | h P
CDZ(,;(x,y,Z) = %Hm{ \x:|H”|: \y:|
N \52"'+l1_17Tm I'n! W(Z) W(Z) W(Z)
2 2
X" +y
Xexp| — > 2
p{ w(z)? } Y

where w(z)=wgy\/1+(z/z5)% wy is the beam radius at the
waist, and zj is the Rayleigh range. As shown in a variety of
integrable 2D quantum billiard systems, the phase factor ¢ in
the SU(2) coherent states plays a vital role in the quantum-
classical connection [21,22]. Any LG modes (b;f(r, ¢,z) can

be decomposed into a sum of HG modes @Zﬁ,,k’k(x,y,z)
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FIG. 7. Numerical patterns of the GCSs with different phase
factor and different order. The phase factors of the GCSs from the
first to last column are 0, 7/6, 7/3, and 7/2, respectively; the
indices (p,I) from the first to last row are (0,10), (3,7), (7,3), and
(10, 0), respectively.

with the same coefficients B(p,l,k) but an additional /2
phase factor:

2p+l
OL(r.p0)= S M F)Bp.LODS, (v (3)
k=0

with

(- 1)"2 DN+ p! Qp+1-k) k!

B ,l,k =T )
(P,L.k) 22 s (k=s) 1V (p+1-5) ! (p—k+5)!
4)

where the summation over s is taken whenever none of the
argument of factorials in the denominator are negative. As in
the representation of SU(2) coherent states, we utilize the
phase factor ¢ to characterize a new family of GCSs:

2p+l
Vx.y.2.0)= 2 eB(p. LY, | (x.y.2).  (5)
k=0

The GCSs in Eq. (5) exhibit a traveling-wave property. The
standing-wave representation of GCSs is given by

COS 2,p+l
N4 — cos(kcp)}
P / HG
sin =V2 2 . B(p,l,k)(b +i—k (X,y,Z) .
{W}z.z } [ k=0 {SIH(I“P) 2pri-kk
(6)

The GCSs represent a general family to comprise the HG
and LG mode families as special cases. As shown in Fig. 7,
it exhibits that the phase factor ¢ plays an important role for
the GCSs to transform from the HG modes to the LG modes
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in different order. On the one hand the GCSs represent to the
HG modes when the phase factor is equal to zero, and on the
other the GCSs represent to the LG modes when the phase
factor is equal to /2. It can be seen distinctly that HG
modes steadily convert to LG modes by controlling the phase
factor precisely. More importantly, the superposition of the
GCSs with the particular phase factor reveals the patterns of
experimental results: square pattern, hyperbolic pattern, el-
liptic pattern, and circular pattern. It is worthwhile to men-
tion that the present GCSs are intimately correlated to the
Ince-Gaussian (IG) beams described by Bandres and
Gutierrez-Vega [25-28]. Ince-Gaussian beams not only con-
stitute the exact and continuous transition modes between
HG and LG beams but also constitute the third complete
family of transverse eigenmodes of stable resonator. The
transverse structures of IG modes are adjusted by the ellip-
ticity factor, whereas the present GCSs are varied by the
additional phase factor. It can be shown that IG modes can
be completely identical to the GCSs with some connection
between the ellipticity factor of IG modes and the phase
factor of GCSs. However the representation of GCSs is more
convenient and elegant to interpret the present experimental
patterns.

We applied the GCSs to explain the experimental results
and found that the observed vector patterns shown in Figs.
2(a)-2(d) can be fittingly described as following wave func-
tions, respectively:

E(x,y,2) = W0 (x,y,2;0.0487)% + WE%(x,y,2;0.048m)3,
(7)

I::(x,y,z) = ‘Ifgiq'113(x,y,z;0.305 m)x + [W5;(x,y,2:0.3051)
— W (x,y.2:0.35m)]F, (8)

E(x,y,2) = W5t (x,y,2;0.4m)% + [W50(x,y,2;0.295m)
+ WS (x,,2:0.295m)], 9)

E(x,y,z) =Wo7 (x,y,2:0.48m)% + W35, (x,y,2:0.457)5.
(10)

The wave function can be written as E(x,y,z)=E,(x,y,z)X

+E,(x,y,2)y, where E,(x,y,z) and E,(x,y,z) are composed
by the GCSs. With the analytical function given in Egs.
(7)—(10), Fig. 8 depicts the numerically reconstructed pat-
terns for the four kinds of the experimental results shown in
Fig. 2. The patterns in Figs. 8(a) and 8(d) which are found to
be close to HG and LG mode arise from the phase factor
slightly different from the phase factor of HG and LG
modes. Moreover, the superposition of GCSs with the phase
factor appreciably different from the phase factors of HG and
LG modes reveals the hyperbolic and elliptic modes shown
in Figs. 8(b) and 8(c). From this point of view, the phase
factor indeed plays a vital role in the GCSs to construct the
polarization-entangled modes different from pure HG and
LG modes.
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FIG. 8. Numerically reconstructed patterns for the experimental
results shown in Fig. 2.

For stable stationary polarization-entangled wave pat-
terns, the phase factor ¢ of the GCS is governed by the
criterion of the maximum overlap between the cavity mode
distribution and the pump distribution. Note that the maxi-
mum overlap integral corresponds to the minimum pump
threshold. The overlap integral for the transverse mode

E(x,y,z) can be written as

I(¢)=ffS(x,y,z;so)R,,(x,y)dxdy, (11)

where the normalized intensity distribution S(x,y,z;¢) and
the pumping distribution R,(x,y) are given by

E(xyz
S(x,y,z;0) = | i=x,y

fdxf dyf dz\ExyZ)|

(12)
and
2 2
%% exp[ (x = xp) ;;(y—)’()) ] (13)

wl’ p

R,(x,y) =
with the pumping radius w,=25 um in the scheme. Figure 9
shows the overlap functional I(cp) as a function of ¢ for the

state Ex \I’1 3(x,y.z;¢) and E (x,y,2)= \1’3 1s(x,y,2;¢) cor-
responding to the experimental patterns shown in Figs. 2(a)
and 2(c) with xy=—-50 um, y,=63 um, and x,=—137 um,
yo=61 um, respectively. The maximum of the overlap indi-
cates the most possible phase factor to construct the experi-
mental result with the specific off axis. As a result, we can
control the phase factor in the vicinity of the peaks 0.07m
and 0.4 in Figs. 9(a) and 9(b) to simulate the patterns which
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FIG. 9. (a) The overlap functional /(¢) as a function of ¢ for the
state E,(x,y,z) in Eq. (7). (b) The overlap functional I(¢) as a

function of ¢ for the state E (x,y,z) in Eq. (9).

are in good agreement with the experimental patterns as
shown in Figs. 2(a) and 2(c). The diagram of the phase factor
indicates the accurate direction to construct the experimental
results. In other words, we can manipulate various patterns
by use of the relation between the pumping position and the
phase factor in the overlap function. Continuously, Figs.
10-13 display the numerical results of the polarization-
resolved patterns according to the patterns in Figs. 3-6.
From the analytical results of the polarization-resolved pat-
terns, we can confirm that the polarization-entangled patterns
are composed of two distinct patterns with orthogonal linear
polarization. The important point to note is that the trans-
verse pattern is linearly polarized, but the polarization is spa-
tially dependent. The good agreement between the recon-
structed and experimental patterns verifies that the GCSs
provide a practical description for the polarization-entangled
optical coherent waves. Two types of point singularities in
the polarization of a paraxial Gaussian laser beam had been
researched in recent years. Vector singularities are isolated,
stationary points in a plane at which the orientation of the
electric vector of a linearly polarized vector field becomes
undefined. Therefore elliptic singularities are isolated, sta-
tionary points in a plane at which the orientation of the el-
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FIG. 10. Numerically reconstructed patterns for the experimen-
tal results shown in Fig. 3.

liptically polarized fields becomes undefined. In this paper,
we investigate the elegant GCSs to reconstruct the
polarization-entangled experimental results. For this reason,
the V points of the various experimental patterns which are
the transitions between HG and LG modes can be revealed
explicitly. Vector point singularities are conventionally de-
scribed in terms of the angle field ®(x,y)=arctan(E,/E,),
where E, and E|, are the scalar components of the vector field

E along the x and y axes. The vortices of O(x,y) are the
vector singularities at which the orientation of the vector of

E is undefined. Figure 14 shows the contour plot of phase
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FIG. 11. Numerically reconstructed patterns for the experimen-
tal results shown in Fig. 4.

PHYSICAL REVIEW E 75, 026614 (2007)

FIG. 12. Numerically reconstructed patterns for the experimen-
tal results shown in Fig. 5.

field O(x,y) according to the patterns which are recon-
structed by the GCSs in Fig. 8. The contour plots reveal that
the singularities of different GCSs belong to extremely dif-
ferent kinds of singular patterns. Figures 14(a), 14(b), and
14(d) display the grid, twist, and row patterns, respectively.
As well, Fig. 14(c) shows that the singular pattern seems to
be the transition between the twist and row patterns accord-
ing to Figs. 14(b) and 14(d). Figure 15 depicts the contour
plot of angle field ®(x,y) for the boxed regions to show the
details, and it can be found that all saddle points are to be
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[/
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FIG. 13. Numerically reconstructed patterns for the experimen-
tal results shown in Fig. 6.
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FIG. 14. (Color online) Contour plot of angle field ®(x,y) ac-
cording to the reconstructed patterns in Fig. 8.

open saddles with no joined arms. Since no closed saddles
are found in the experimental vector field, no extrema are
observed. As discussed in Refs. [29,30], the phase extrema
are really rare because there is little room left in the phase
field to accommodate them.

IV. CONCLUSION

In conclusion, we have used a high-level isotropic laser
with off-axis focused pumping and on-axis defocused pump-
ing to generate various high-order polarization-entangled op-
tical coherent patterns. The structures of the polarization-
entangled patterns are highly stable and the experimental
results are easily reproducible. All the experimental patterns
have been well analyzed with the GCSs which constitute a
useful family of quantum states for the 2D harmonic oscilla-

FIG. 15. (Color online) Contour plot of angle field ®(x,y) for
the boxed regions shown in Fig. 8.

tor. Furthermore, various patterns can be manifestly ex-
plained by use of the relation between the pumping position
and the phase factor of the GCSs in the overlap integral.
With the connection between theoretical analysis and experi-
mental results, the formation of vector singularities can be
clearly represented. The perfect reconstructed results also re-
veal that the GCSs play an important role in the mesoscopic
region with optical coherent waves.
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